
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??–??, 1993
c© 1993 Kluwer Academic Publishers – Manufactured in The Netherlands

Plurals: A SIMD Extension to EuLisp

SIMON MERRALL∗ (sm@maths.bath.ac.uk)

JULIAN PADGET (jap@maths.bath.ac.uk)

University of Bath, School of Mathematical Sciences, Bath BA2 7AY, United Kingdom

Keywords: Data Parallelism, Lisp, Primitive Machine Model, SIMD

Abstract. There are now several versions of Lisp for massively parallel SIMD architec-
tures like the Thinking Machines Connection Machine. We describe here the extensions
made to EuLisp for data-parallel programming and their implementation on a specific
platform, a MasPar MP-1. Plural EuLisp, in keeping with the rest of the language,
presents a collection of simple orthogonal operators which capture the essence of data
parallel processing. In support of this, we demonstrate how to implement a number of
higher-level abstraction from other data-parallel languages.

1. Introduction

Plural EuLisp is an intermediate stage in our implementation of extensions
inspired by the Paralation Model described by Gary Sabot [4]. A large set
of data parallel primitives allow objects to be allocated and manipulated
on the processor array. In this respect it is not unlike *Lisp (section 4.1).
However Plural EuLisp also includes a processor management mechanism
motivated by Paralation Lisp. This allows a set of processors to be allocated
leaving the remaining processors available for later allocation. When deal-
ing with massively parallel systems this is preferable to tying up thousands
of processors when only a fraction are needed.

In general, massively parallel computers have a very large number of
tightly linked processing elements (PEs). Each PE comprises a simple
processor and a small amount of local memory. The PEs can usually com-
municate with their immediate neighbours via direct connections (either
a four or an eight way grid) and with any PE in the array via a router
mechanism, for example a hyper cube network (CM-2) or an hierarchical
cross-bar (MasPar). These computers work in an SIMD (Single Instruction
Multiple Data) fashion; all the PEs execute the same instruction at the
same time, but on different data. The instructions are broadcast to all PEs

∗This work has been partially supported through the British Council ARC Pro-
gramme, a Science and Engineering Research Council (SERC) Studentship, SERC grant
GR/G31048, International Computers Limited (SERC CASE award)

2 MERRALL, PADGET

by a single controller unit and each PE has an activity bit which controls
whether the PE executes the current instruction. There is also often a
logical OR-tree used to determine quickly if any PEs are active.

Two of the most widely used examples of massively parallel architectures,
the Connection Machine and the MasPar, though matching this general
configuration differ from each other significantly. These machines are con-
nected to a conventional host computer which controls interaction with the
processor array. On the Connection Machine the host computer sends a
macroinstruction stream to the controller unit which broadcasts a nanoin-
struction stream to the PEs. On the MasPar the control unit (ACU) is
capable of independent program execution and executes a program loaded
up from the host computer containing both parallel and serial instructions.
This means that on the CM-2 the PEs can directly address the memory of
the host computer whereas on the MasPar they can only access the ACU.
In consequence the Connection Machine forms a single computer with its
host, while the MasPar is a distributed system.

The dialects of Lisp for these machines which contain no high-level ab-
stractions reflect the architectures they were developed for. Plural EuLisp
encapsulates a primitive data parallel model which aims to be independent
of these two architectural models. Most aspects of data parallel languages
can be expressed in Plural EuLisp, but its simple nature makes it a good ve-
hicle for describing general issues in the implementation of such languages.
Similar mechanisms have been implemented for the Connection Machine
suggesting Plural EuLisp is not restricted to a particular architecture.

In the next two sections we will first describe Plural EuLisp, followed by
its implementation on the MasPar MP-1. We also describe an extended
system, the MasPar Lisp Server, which allows several Lisp (distributed)
processes to share the MasPar. This gives better utilisation of the data
parallel resource and is not a feature of other languages. We then give a
brief overview of other data parallel languages, and outline how they might
be defined in Plural EuLisp.

2. Plural EuLisp

Plural EuLisp is a data parallel extension of EuLisp. The extensions supply
a new sequence data structure called a plural, which is similar to a vector,
each element of which is allocated on a separate processing site. A plural
is created by the function make-plural. It takes the length of the desired
plural as its argument. For example:

(setq a (make-plural 5))

=> #P(() () () () ())

PLURALS: A SIMD EXTENSION TO EULISP 3

The initial value of each element of the plural is () (the empty list). We
can set and reference elements of the plural using the function plural-ref
and its updater:

((setter plural-ref) a 1 ’(1 a))

=> #P(() (1 a) () () ())

Plural EuLisp has a set of primitive functions which can be applied to
plurals. These are data parallel versions of typical lisp primitives. They
are usually distinguished by a -s suffix (e.g. car-s null-s), but where
there is an appropriate generic function the data parallel version has been
added as a method (e.g. +). When the function is applied to a plural it
is as though the serial version of the function were applied to each value
in the plural and the result is a new plural containing these values (in the
same order).

(null-s a)

=> #P(t () t t t)

The resulting plural will be allocated on the same set of processing sites
as the argument plural since its values were created on those sites. In
this case, we say that the two plurals are conformal or belong to the same
conformal set. There is an additional function, bang, which has no serial
counterpart. This projects a singular value into a plural, for example:

(setq b (bang 55 a))

=> #P(55 55 55 55 55)

This creates a new plural conformal to a with each element set to 55. If
a data parallel function takes more than one argument (e.g. cons-s) then
they must be conformal. So

(cons-s b a)

=> #P((55) (55 1 a) (55) (55) (55))

is correct, but (cons-s b (make-plural 5)) signals an error as the new
plural would not be conformal to b. Therefore, to make it easier to al-
locate a conformal plural, the argument to make-plural can also be a
plural, in which case the result is a plural conformal to the one supplied
as the argument. Similarly the conversion functions list-to-plural and
vector-to-plural accept a plural as the optional second argument and

4 MERRALL, PADGET

the result will be conformal to this plural—padding or truncating the list
or vector data as necessary.

In order to write any non-trivial parallel functions we need one more
function, if-s, a parallel version of if. The arguments are three expres-
sions which deliver (conformal) plural values. The values of the first plural
are interpreted as booleans which are used to modify the activity of the
elements of the virtual processor set before each of the remaining expres-
sions are evaluated. The plurals resulting from these two expressions are
merged to form the result of the conditional expression. Before executing
the two forms the fast or mechanism is used to check there are some active
processors, if not the expression is simply ignored; this is important when
defining recursive functions:

(defun list-length-s (list-s)

(if-s list-s (+ (bang 1 list-s) (list-length-s (cdr-s list-s)))

(bang 0 list-s)))

If both the if-s forms were evaluated regardless of the current activity
this intuitive definition of list-length would recurse indefinitely. This
shows how it is, in principle, straightforward to define parallel functions.
This is the processing side of the model. The other side is communication
and that mechanism is modelled closely on that in Paralation lisp.

Given two plural arguments the function match creates a relation between
the conformal sets of the plurals called a mapping. This defines which
elements from the source set are mapped to each site in the destination
set. It can be thought of as a collection of arrows between the two sets
connecting the sites that were equal in the original plurals (those given to
match). Given a mapping and a plural in the source conformal set the
function move creates a plural in the destination conformal set. This can
be thought of as the values in the plural moving down the arrows in the
map to sites in the destination conformal set. It is possible that there will
be no arrows pointing to a site in the destination and a default value is
supplied for this case. If more than one arrow points to a site then a given
binary function is used to combine the values.

(setq from (list-to-plural ’(nowhere 1st 1st 2nd nowhere)))

=> #P(nowhere 1st 1st 2nd nowhere)

(setq map (match (list-to-plural ’(1st 2nd 3rd)) from))

=> #<mapping>

(move (list-to-plural ’(a b c d e) from) map cons-s ’empty)

=> #P((b . c) d empty)

PLURALS: A SIMD EXTENSION TO EULISP 5

In the example above a collision between two objects occurs in the first
element and they are made into a cons pair (note that the order in which
the arguments are presented to the combining function is undefined). The
last element has no counterpart in the source and takes the default value
empty. A detailed summary of the operators defined in the plural module
appears in the appendix.

3. Implementation

A plural is a collection of objects allocated on a set of processing sites, one
per site. Two plurals are conformal if they are allocated on the same set
of sites. A plural is specified by two components, its conformal set and
its values. As well as specifying the physical sites the values of a plural
are allocated on, the conformal set also identifies the internal activity (as
modified by if-s) of the plural. These two components make a natural
division in the parallel system:

1. The Parallel Lisp Kernel (PLK): Functions Allocating and manipu-
lating lisp objects in parallel.

2. The Context Management System: Allocating conformal sets

Both sections are written in mpl (Maspar’s data-parallel variety of C)
and, along with the special functions handling communication, constitute
all the code running on the MasPar.

The extended EuLisp has an extra intrinsic module written in C called
plural and the exported functions invoke the appropriate functions on the
MasPar. The plural functions are still very basic and so they are wrapped
in a Lisp module which defines the class plural along with its operators.
Figure 1 shows the system organisation.

3.1. Parallel Lisp Kernel

This set of parallel lisp primitives manipulate a Lisp object on each cur-
rently active PE in a conformal set. We refer to these collections as Parallel
Lisp Objects (PLOs).

3.1.1. Parallel Lisp Objects

Each processing element (PE) contains a small garbage-collected heap.
To conserve space we have adopted a 16-bit addressing system in which an
address is an index into an array. We use a compacting garbage collector
and so allocation is simply a matter of moving the heap top pointer. This

6 MERRALL, PADGET

Figure 1: System Organisation

makes it easy to allocate different sized objects on different PEs in parallel
and so we can support heterogeneous plurals without difficulty. This takes
advantage of the local indirect addressing available on the MasPar where
although all the processors execute the same instruction stream it need not
be applied to the same address on each PE.

In general the objects in a PLO will be at different locations on each PE
and it would be impractical for the host computer (i.e. the lisp process) to
keep track of all these addresses. A section of the heap called the plural
space is used to give the host a handle on parallel lisp objects. It also
forms a part of the processor management mechanism (A more complete
description is given in [3]). To give the host a handle on the PLO we
allocate a slice (i.e. the same location on each PE) of the plural space and
store the address of the objects within this slice. This means the host only
requires one value to identify a PLO.

3.1.2. Parallel Lisp Functions

A number of the fundamental lisp operations, such as cons, car etc.,
have direct equivalents in mpl. But some functions, such as binary- and
binary/ have been combined into a single function (e.g. bin op) which
takes an additional argument to identify the operation. This reduces the
amount of code but also, as the opcode can denote a parallel operation,

PLURALS: A SIMD EXTENSION TO EULISP 7

different operations can be executed on different PEs which will share the
allocation and argument checking phases of the operation. These functions
all have the same function prototype.

int function name(MP PluralHeap MPPH arg, [MP PluralHeap MPPH args],
MP PluralHeap MPPH result);

Obviously the number of arguments will vary and functions like bin op
have an extra argument op id.

The mpl handle on a PLO is the parallel address of a 16-bit heap address
and is defined as follows:

typedef plural natural *plural MP_PluralHeap;

And natural, which has the role of an address, is defined as follows:

typedef unsigned short int natural;

We pass addresses because many of the operations are not functional
and, instead, we treat the return value as a completion code. Currently
if any of the processors should fail then the operation fails globally (note
the function has a singular result). Below is the simplified mpl code (error
checking has been omitted) for the function cons. The explanation follows
the code.

int cons(MPPH_car, MPPH_cdr, MPPH_pair)

MP_PluralHeap MPPH_car, MPPH_cdr, MPPH_pair;

{

plural cons_cell *plural new_cell;

plural natural tmp;

MP_PluralHeap MPPH_tmp = &tmp;

mp_alloc(MP_CONS, (plural int) 1, MPPH_tmp);

new_cell = (plural cons_cell *plural) OA_data(MPPH_tmp);

new_cell->car = OA_offsets(MPPH_car);

new_cell->cdr = OA_offsets(MPPH_cdr);

OA_offsets(MPPH_pair) = OA_offsets(MPPH_tmp);

return SUCCESS;

}

8 MERRALL, PADGET

First we request a new cons cell on each active PE, we create a temporary
handle for these as the arguments may not be independent. The macro
OA data extracts the physical address of the PLO and we cast this to a
plural pointer to the type of object we are dealing with, in this case the
structure cons cell. The contents of this pair are set to the addresses,
that is the offsets into the 16-bit heap, of the two arguments. The macro
OA offsets extracts this value from the PLO handle. To finish we copy
the contents of the temporary handle (MPPH tmp) into the result handle
(MPPH pair) and return SUCCESS.

In this section we have described how collections of objects are allocated
and manipulated by the functions in the Parallel Lisp Kernel (PLK). Next
we look at the other component of plurals, the conformal sets.

3.2. Context Management

A context is a mechanism for identifying the set of processors correspond-
ing to a conformal set and also its internal activity. Viewing the processor
array as a sequence we can identify a contiguous subset by its start and
length. We allocate a structure on the ACU containing these two values. It
also contains a plural space offset, this gives the internal context and will
be explained shortly. The context is defined as follows:

typedef struct _MP_Context {

natural start;

natural length;

natural offset;

} MP_Context;

To execute a PLK function within a certain context we first deactivate all
those PEs not in the context. So if MPC is a context structure, executing a
PLK function within the conditional below will ensure only those processors
in the context will perform the operation.

(MPC.start < iproc1 < (MPC.start + MPC.length))

The internal context, that is the activity of each site in the context, is
given by the top of a stack allocated on each processor in the context. Each
stack is a list of nil and non-nil values and these stacks taken together
they form a PLO. Now when executing a PLK function within a given
context we need an additional step to get the correct active set. Having

1
iproc is an mpl global plural containing each PEs number.

PLURALS: A SIMD EXTENSION TO EULISP 9

activated only those processors in the context we then take the car of the
context stacks and modify the active set further depending on this value.

The context stacks are manipulated by the functions mp if, mp else and
mp fi . Once the stacks have been modified they remain in that state and
affect all operations in that conformal set until they are modified again.
The EuLisp macro if-s first calls mp if with the result of the boolean
expression and then evaluates the consequent form. Any parallel functions
in this form will be executed with respect to the modified context. Mp else
is called to set the context for evaluating the alternative form. Finally
mp fi is called to restore the context stacks to their previous state.

3.3. Plurals

A plural comprises an offset into the plural space and the address of the
context structure on the ACU. The EuLisp module eubang defines the class
mp-object with plural as a subclass. This is because mappings have the
same representation but we wish to distinguish them from plurals. This
we achieve by declaring a common superclass mp-object with plurals and
mappings inheriting from it. The TELOS definitions for these classes are:

(defclass mp-object ()

((context

initarg context

reader context)

(offset

initarg offset

reader offset))

predicate mp-object-p)

(defclass plural (mp-object)

()

constructor (allocate-plural context offset)

predicate pluralp)

In general the primitive functions in the plural module take as their ar-
guments a context address and a set of plural space offsets. The functions
in eubang extract these values from the plural objects, check they are con-
formal by comparing the context addresses and then call the appropriate
primitive function. This will then make a call to the MasPar. The result
will be a new plural space offset and this, along with the context address
of the arguments, is used to create a new plural object.

10 MERRALL, PADGET

3.4. Communications

One aspect of communication is printing the contents of a plural. This
is done by writing the output of each PE into a local scratch space. These
strings are then printed using parallel printf wrapped with #P(. . .).

Another aspect is that of moving objects between processors. This in-
cludes transfers between the host and the array, as well as transfers between
processing elements. We now examine this problem in more detail.

3.4.1. Transferring Lisp Objects

To copy an object between processors we encode it into a byte string,
transfer the string and decode it to build a copy on the destination proces-
sor. For simplicity we recursively encode structures implicitly defining the
references in them. For example if the decoder creates a cons cell it takes
the next two objects it creates as its car and cdr. Such an algorithm means
that we cannot deal with reentrant structures. We are further limited by
how big a string we can construct on a processing element. We encode a
lisp object as follows:

Type: 1 Byte.

Size: 1 Byte, optional, only used for vectors.

Data: This may be actual data, 4 bytes containing a value for an
integer say, or for a cons cell the data is decoded to create
further lisp objects which constitute the data.

There are mpl and C versions of encode and decode and the same proto-
col is used for both types of transfer. But during an host to array transfer
it may be necessary to work in batches because the host has more scratch
space than the array. The encode/decode routines are used for transferring
objects by the functions bang, plural-ref and its updater. They are, of
course, also used to implement mappings since we need to compare data
held on different PEs.

3.4.2. Mappings

A mapping is represented by a plural conformal to the destination plural.
Each element contains a list of processor ids. These are PEs that objects
should be taken from to make the new plural. A mapping is another kind
of mp-object as noted in section 3.3.

PLURALS: A SIMD EXTENSION TO EULISP 11

(defclass mapping (mp-object)

()

constructor (allocate-mapping context offset)

predicate mappingp)

To move a plural down a mapping we first encode it. Then we descend
the lists of processor ids and each PE copies the object description from the
indicated PE using the Maspar’s global router. We build the object and
move onto the next id consing up the new objects as we do so. The following
pseudo-code expresses the algorithm for moving data down a mapping:

moved plural = nil
while (∃x ∈ map : !null?(x))

encode(data)
fetch(scratch, car(map))
new objects = decode(scratch)
moved plural = cons(new objects, moved plural)
map = cdr(map)

elihw
return moved plural

The result is a plural of lists of moved objects. From these a single value
is computed using the combining function specified, or if the list is empty,
the default value is used. Below is the pseudo-code for building a mapping,
i.e. a plural of lists of PE ids.

map = nil
for each (x ∈ source)

if (x = y ∈ destination)
map = cons(iproc(x), map)

fi
rof
return map

3.5. The MasPar Lisp Server

Using Plural EuLisp we can partition the processor array into a collection
of independent sets of processors. This is because each conformal set has
its own internal context which persists between function calls. As a result,
instruction streams for different conformal sets can be interleaved with no
danger of them interfering with each other. To do this in practice, we have
replaced the front-end’s EuLisp process with a server. EuLisp processes on

12 MERRALL, PADGET

any of the machines on the local area network can connect via sockets to
the MasPar and allocate data parallel objects via the Plurals interface.

The MasPar has a job-swapper which allows several programs to share
the processor array by dividing the PE memory between the programs.
This is not an ideal method for running multiple data parallel lisp pro-
cesses on the MasPar. Firstly the reduced memory makes the heap size
prohibitively small, secondly it requires running several lisp processes on
the host machine, a task to which it is not well suited. In contrast the
lisp server allocates memory as it is required and where possible the lisp
processes will be allocated disjoint processor sets. In this way several pro-
grams that need only part of the processor array can be run at the same
time without affecting each other.

4. Related Work

In this section we will briefly describe some of the other data parallel sym-
bolic languages and outline how they can be defined in terms of Plural
EuLisp.

4.1. Other Languages

*Lisp [1] A language devised for the CM-2, it gives fine control over the
processor array via a very large number of functions which operate
on pvars. Each pvar has as many elements as the virtual processor
configuration which is being used (i.e. it is fixed). The parallel oper-
ators are distinguished from their serial counterparts by a !! suffix
or a * prefix. Naturally enough, this language reflects the nature of
the CM-2 where the host computer directly controls the array and
the singular and parallel memory are mutually addressable.

TUPLE [7] This is a more recent language developed on the MasPar
rather than the CM-2. A notable aspect of TUPLE is how its organ-
isation mirrors that of the MasPar itself. The programmer defines
data parallel variables(defpevar), and functions (defpefun) and ex-
ecution is then invoked using the ppe form which invokes the evalu-
ator running on the ACU. The data parallel component of TUPLE
is effectively a disjoint subsystem. This reflects the MasPar system
architecture where the Array Control Unit is a full control processor
capable of independent program execution.

Paralation Lisp [4] A paralation is a collection of processing sites, a field
belonging to a paralation has a value for each site in that paralation.
A paralation is created using the function make-paralation. Having

PLURALS: A SIMD EXTENSION TO EULISP 13

allocated some new set of processing sites it then returns a field in
the new paralation which numbers the sites from 0 to n − 1, this is
the index field.

(setq a (make-paralation 5))

=> #F(0 1 2 3 4)

Parallel code is written using the elwise form, this takes a list of
symbols bound to fields in the same paralation and a lisp expression.
Within the body of the elwise the lisp expression is executed in
parallel on the paralation and the symbols are bound to the local
values of the fields on each site rather than the entire field. In effect
elwise is a special kind of let form.

(elwise (a) (cons a ()))

=> #F((0) (1) (2) (3) (4))

As mentioned earlier mappings in Plural EuLisp are almost identical
to those in Paralation Lisp and are created in the same way using
match. The only actual difference is that in paralations a singular
rather than parallel combining function is specified. See section 4.2.3.

Finally, Paralation Lisp has a function vref which reduces a field to
a single value using a given binary combining function.

(vref a +)

=> 10

Connection Machine Lisp [5] The data parallel objects of CM-Lisp are
xappings: these are unordered sets of ordered pairs. The first element
of each pair is the index the second is the value, e.g:

{tiny→rabbit small→glow major→boat}

Additional program notation is introduced to indicate various parallel
operations. The symbol α indicates parallel code, and the symbol •
cancels the affect of α. Operations are applied to the xapping values
and the index of the result will be the intersection of the argument
indexes.

α(cons •’{0→tiny 1→small 2→major}
•’{1→hoot 2→tree 3→boat})

=> {1→(small . hoot) 2→(major . tree)}

14 MERRALL, PADGET

Communication is abstracted by β which in general performs a re-
duction in the same way as vref, but it can also operate in a way
similar to mappings. However, β is too complicated to describe in
full here; the interested reader is directed to the reference above.

NESL [2] NESL is a strongly typed, applicative data parallel language
with a lisp-like syntax. Parallelism is supplied through a set of data
parallel constructs based on vectors, including the over form which
applies any function over the elements of a vector in parallel, and a
broad set of parallel functions that manipulate vectors.

4.2. Implementation using Plurals

We now briefly indicate how these languages could be implemented using
Plural EuLisp.

4.2.1. Parallel Data Structures

Most of the parallel data structures in these languages are easy to repre-
sent using plurals. The parallel variables in TUPLE and *Lisp are equiv-
alent to plurals which have as many sites as there are physical processors.
Adding an extra slot for the length and ignoring the excess elements gives
us the vectors of NESL.

Fields and paralations correspond closely to plurals and conformal sets.
Adding an additional slot to the plural class which contains the paralation
index field gives us a field class.

Xappings are best implemented by using the rendezvous mechanisms de-
scribed by Hillis and Wholey [6]. Every object which is used in the range
of a xapping has a unique rendezvous location. This would be a site in a
sufficiently large plural, the range object is stored in this slot and is re-
ferred to by its rendezvous location. Xappings are represented by a pair of
conformal plurals, the range and the value. The value contains objects but
the range contains the position of the rendezvous location. The reasons for
this will become clear shortly.

4.2.2. Execution

With the exception of *Lisp all the languages here have a special form
used to indicate parallel code. The code within the form is an ordinary
lisp expression which is executed in parallel. So to implement any of these
languages in Plural EuLisp requires a kind of compiler which rewrites the
special forms into Plural EuLisp expressions. This is, in general, a fairly
simple process: functions must be replaced with their parallel counterparts
and singular values must be wrapped with code which will replicate them
at run time.

PLURALS: A SIMD EXTENSION TO EULISP 15

In TUPLE, *Lisp and NESL the functions are executed in the single
global context. In Paralation Lisp we must check that the plurals are con-
formal i.e. belong to the same paralation. In CM-Lisp we must identify
the intersection of the xappings and evaluate the expression for those loca-
tions only. The rendezvous mechanism makes this straightforward, albeit
expensive. The values of the xappings involved in the expression are sent
to the rendezvous locations given in the range. The expression is evaluated
in the rendezvous plural but only on the sites which received all the values.
The results are then collected into a new xapping.

4.2.3. Communication

To convert plural mappings into paralation mappings we must be able
to derive the parallel version of the combining function from the singular
argument to move. This is basically the same conversion process used by
elwise. Most of the various communication functions in TUPLE, *Lisp
and Nesl can be implemented using mappings. Those functions using fixed
and regular communication patterns, e.g. the reduction operators, could
use a library of pre-computed mappings eliminating the cost of match.
Other functions would have to create mappings which provided the desired
communication pattern as they were needed.

The β operator of CM-Lisp also makes use of the rendezvous mechanism.
The communication patterns defined by β are implicit in the act of sending
objects to their rendezvous location and so much of the mechanics of β
are present in the rendezvous mechanism. It only remains to combine
any collisions and collect the results into a new xapping to complete the
operation.

4.2.4. Nested Parallelism

In CM-Lisp and Paralation Lisp the parallel forms, i.e. α and elwise,
can be nested. Early versions of these languages did not execute nested
expressions fully in parallel, instead they sequentialised on the outer forms
and only the inner-most parallel form was executed in parallel. NESL how-
ever executes nested forms fully in parallel at all levels by flattening out the
nested forms at compile time, the same techniques have been used in later
versions of paralation lisp. The high-level expressions are compiled into a
more primitive language (e.g. SV-Lisp or Vcode) in much the same way
we rewrite the expressions into Plural EuLisp. These primitive languages
motivate extensions to Plural EuLisp which would allow us to fully support
nested parallelism, in particular the segmented scan operations which al-
low a collection of vectors to be represented by and manipulated as a single
vector.

16 MERRALL, PADGET

5. Summary

We have examined various issues in the implementation of data parallel
languages here by looking at the relatively simple mechanisms in Plural
EuLisp. Despite their simplicity the abstractions are central to most data
parallel languages and we have outlined how they can be defined in terms
of plurals. Execution of data parallel programs is currently restricted by
the speed of the host computer where it is being interpreted: on the Mas-
Par this is a VaxStation which is prohibitively slow. This partly motivated
the Lisp Server which allows data parallel lisp programs to be run from
faster machines. This has demonstrated an added advantage of the proces-
sor/memory management mechanisms in Plural EuLisp which make it easy
for several programs or for several components of a distributed program to
share the MasPar.

References

1. *Lisp Reference Manual. Thinking Machines Corporation (1988).

2. Blelloch, G. E. NESL: A Nested Data-Parallel Language. Carnegie
Mellon University, School of Computer Science, Pittsburgh, PA 15213
(Jan 1992). CMU-CS-92-103.

3. Merrall, S. C. and Padget, J. A. Collections and Garbage Col-
lection. Proc. of International Workshop on Memory Management,
IRISA/INRIA - Rennes, Campus de Beaulieu, 35042 Rennes Cedex,
France (Sept 1992). LNCS 637.

4. Sabot, G. W. The Paralation Model: Architecture Independent SIMD
Programming. MIT Press, Cambridge, MA (1988).

5. Steele, G. L., Jr., and Hillis, W. D. Connection Machine Lisp: Fine-
Grained Parallel Symbolic Processing. ACM Conference on Lisp and
Functional Programming (1986) 279–297.

6. Steele, G. L., Jr., and Wholey, S. Connection Machine Lisp: A Dialect of
Common Lisp for Data Parallel Programming. International Conference
on SuperComputing (1987). TMC Tech. Report PL87-6.

7. Yuasa, T. TUPLE - An Extension of KCL for Massively Parallel
SIMD Architecture. Toyohashi University of Technology, Toyoyashi 441,
Japan, draft of 2nd version (1992). available from author.

PLURALS: A SIMD EXTENSION TO EULISP 17

A. The Plural Module

make-plural plural function

Arguments

spec : Either an integer, n, or a plural, p.

Result

Returns a freshly allocated object of class plural. If the argument is an
integer then the new plural will have n elements. If the argument is a
plural, then the result will be conformal to p. Two plurals are conformal if
they are allocated on the same set of processors.

plural-length plural function

Arguments

plural : An instance of plural.

Result

Returns the number of elements in plural.

plural-ref plural function

Arguments

plural : A plural.

index : An integer.

Result

Returns the item stored at position index of plural. It is an error if index
is not in the index range of plural.

(setter plural-ref) plural function

Arguments

plural : A plural.

index : An integer.

object : An object.

18 MERRALL, PADGET

Result

Returns the (modified) plural.

Remarks

Modifies plural so that object is stored at position index of plural. It is
an error if index is not in the index range of plural.

bang plural function

Arguments

object : An object.

plural : A plural.

Result

Allocates a fresh plural conformal to plural and initializes each position
with copies of the value object.

if-s plural special form

Syntax

(if-scondition consequent alternative)

Remarks

This is the parallel conditional form. It is an error unless each of the
three forms operated on plurals belonging to the same conformal set. The
condition is evaluated to deliver a plural of boolean values, which are then
used to identify the active sets for the consequent and alternative forms.
The results from the consequent and alternative forms are then merged to
create the result plural.

match plural function

Arguments

plural1 : A plural of integers.

plural2 : A plural of integers.

Result

Returns a mapping from plural1 to plural2.

PLURALS: A SIMD EXTENSION TO EULISP 19

Remarks

Mappings are constructed by match. The arguments to match are two
plurals of integers, not necessarily conformal, and constructs a mapping
which represents the set of arrows between elements of plural1 and plural2
identified by integer equality.

move plural function

Arguments

plural : A plural—the source.

mapping : A mapping.

function : A function—to combine collisions.

object : An object—for positions in the target with no arrows.

Result

Moves the data in plural down mapping using function to combine col-
lisions and obj as a default value resulting in a new plural. The elements
of the new plural are initialized from the data in plural such that position
i receives the result of combining using function all the values from the
positions in plural that point to i according to mapping. If there are no
such values for a given position it receives a copy of the value obj.

